Chain Sequences and Orthogonal Polynomials
نویسندگان
چکیده
منابع مشابه
Small Oscillations, Sturm Sequences, and Orthogonal Polynomials
The relation between small oscillations of one-dimensional mechanical «-particle systems and the theory of orthogonal polynomials is investigated. It is shown how the polynomials provide a natural tool to determine the eigenfrequencies and eigencoordinates completely, where the existence of a specific two-termed recurrence formula is essential. Physical and mathematical statements are formulate...
متن کاملRiordan Arrays, Sheffer Sequences and “Orthogonal” Polynomials
Riordan group concepts are combined with the basic properties of convolution families of polynomials and Sheffer sequences, to establish a duality law, canonical forms ρ(n,m) = ( n m ) cFn−m(m), c 6= 0, and extensions ρ(x, x − k) = (−1) xcFk(x), where the Fk(x) are polynomials in x, holding for each ρ(n,m) in a Riordan array. Examples ρ(n,m) = ( n m ) Sk(x) are given, in which the Sk(x) are “or...
متن کاملWhen do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials?
Given {Pn}n≥0 a sequence of monic orthogonal polynomials, we analyze their linear combinations with constant coefficients and fixed length, i.e., Qn(x) = Pn(x) + a1Pn−1(x) + · · ·+ akPn−k, ak 6= 0, n > k. Necessary and sufficient conditions are given for the orthogonality of the sequence {Qn}n≥0. An interesting interpretation in terms of the Jacobi matrices associated with {Pn}n≥0 and {Qn}n≥0 i...
متن کاملOn orthogonal polynomials related to arithmetic and harmonic sequences
In this paper we study special systems of orthogonal polynomials on the unit circle. More precisely, with a view to the recurrence relations fulfilled by these orthogonal systems, we analyze a link of non-negative arithmetic to harmonic sequences as a main subject. Here, arithmetic sequences appear as coefficients of orthogonal polynomials and harmonic sequences as corresponding Szegő parameters.
متن کاملToda Chain, Sheffer Class of Orthogonal Polynomials and Combinatorial Numbers
A classification of Hankel determinant solutions of the restricted Toda chain equations is presented through polynomial Ansatz for moments. Each solution corresponds to the Sheffer class orthogonal polynomials. In turn, these solutions are equivalent to solutions with separated variables in Toda chain. These solutions lead naturally to explicit Hankel determinants of some combinatorial numbers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1962
ISSN: 0002-9947
DOI: 10.2307/1993928